Projection of vector $\vec A$ on $\vec B$ is
$\mathop A\limits^ \to .\mathop B\limits^ \to $
$\mathop A\limits^ \to .\hat B$
$\mathop B\limits^ \to .\mathop A\limits^ \to $
$\hat A.\hat B$
If two vectors $\vec{P}=\hat{i}+2 m \hat{j}+m \hat{k}$ and $\vec{Q}=4 \hat{i}-2 \hat{j}+ mk$ are perpendicular to each other. Then, the value of $m$ will be :
Consider two vectors ${\overrightarrow F _1} = 2\hat i + 5\hat k$ and ${\overrightarrow F _2} = 3\hat j + 4\hat k.$ The magnitude of the scalar product of these vectors is
Show that the area of the triangle contained between the vectors $a$ and $b$ is one half of the magnitude of $a \times b .$